ارزیابی توانایی شبکه های مختلف عصبی مصنوعی در پیش بینی تراز آب زیرزمینی در آبخوان محدوده سعادت شهر فارس
نویسندگان
چکیده
شبیه سازی سیستم آبهای زیرزمینی به دلیل پیچیدگی های موجود در طبیعت این سیستم ها، به آسانی میسر نیست. این درحالیست که شبکه های عصبی مصنوعی به عنوان مدل جعبه سیاه با توانایی های بالایی که دارند برای مدل سازی سیستم های پیچیده و غیرخطی بسیار مناسب می باشند. لذا، با توجه به مشکلات فراوان مدل سازی آبخوانها با مدل های ریاضی، شبکه های عصبی مصنوعی برای پیش بینی سطح ایستابی در آبخوانها توسط محققین بکار رفته اند. هدف از انجام این تحقیق ارزیابی توانایی شبکه های عصبی مختلف در پیش بینی تراز آبهای زیرزمینی در محدوده سعادت شهر در استان فارس می باشد. از نظر توانایی شبکه های مختلف مورد استفاده، شبکه های عصبی مصنوعی پیشرو با الگوریتم لونبرگ-مارکوارت بهتریـن نتـایج را ارائه داد. این سـاختار توانست پیش بینی ماهانه ای از سطح ایستابی آبهای زیرزمینی در بازه زمانی دو ساله (از سال 1383 تا سال 1385) با حداقل ریشه مربع متوسط خطا 04/2 متر و 27/2 متر برای مراحل آموزش و آزمایش ارائه نماید.
منابع مشابه
ارزیابی توانایی شبکههای مختلف عصبی مصنوعی در پیش بینی تراز آب زیرزمینی در آبخوان محدوده سعادت شهر فارس
شبیهسازی سیستم آبهای زیرزمینی به دلیل پیچیدگیهای موجود در طبیعت این سیستمها، به آسانی میسر نیست. این درحالیست که شبکههای عصبی مصنوعی به عنوان مدل جعبه سیاه با تواناییهای بالایی که دارند برای مدلسازی سیستمهای پیچیده و غیرخطی بسیار مناسب میباشند. لذا، با توجه به مشکلات فراوان مدلسازی آبخوانها با مدلهای ریاضی، شبکههای عصبی مصنوعی برای پیش بینی سطح ایستابی در آبخوانها توسط محققین بکار رف...
متن کاملپیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی
Groundwater level prediction is an important issue in scheduling and managing water resources. A number of approaches such as stochastic, fuzzy networks and artificial neural network have been used for such prediction. A neural network model has been employed in this research for Shahrood plain groundwater level prediction. For this reason, statistical parameters of groundwater level fluct...
متن کاملارزیابی مدل شبکه های بیزین در پیش بینی ماهانل سطح آب زیرزمینی (مطالعۀ موردی: آبخوان بیرجند)
اساس برنامهریزیهای منابع آب بر پایۀ حجم آب قابل استحصال در آبخوان است و برآورد دقیق این حجم از آب زیرزمینی، کمک شایانی به توسعه میکند. در این مطالعه، از مدلهای بیزین با استفاده از دو ساختار خوشهبندی و صریح برای شبیهسازی سطح آب زیرزمینی آبخوان بیرجند استفاده شد. پنج متغیر تغذیۀ آبخوان، سطح ایستابی، دما، تبخیر و برداشت از آب زیرزمینی در ماه قبل بهعنوان متغیرهای ورودی به شبکۀ بیزین و سطح آب...
متن کاملپیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی
پیشبینی تراز آب زیرزمینی به منظور مدیریت و برنامهریزی منابع آب، بسیار مهم است. برای انجام این پیشبینی، از روشهای متعددی مانند روشهای استوکستیکی، منطق فازی و شبکه عصبی مصنوعی میتوان استفاده نمود. در تحقیق حاضر، مدل شبکه عصبی مصنوعی rbf هیبرید برای پیشبینی تراز آب زیرزمینی دشت شاهرود مورد استفاده قرار گرفته است. این هیبرید بودن شبکه باعث افزایش دقت روش نسبت به شبکه rbf پایه میشود. بدین من...
متن کاملپیش بینی تغییرات شوری زه آب کشاورزی در عمقها و فاصلههای مختلف زهکش زیرزمینی به روش شبکه عصبی مصنوعی
امروزه اهداف زیست محیطی و کشاورزی به طور همزمان در طراحی سیستمهای زهکشی در نظر گرفته میشوند. بنابراین آگاهی از کمیت و کیفیت زهآب تولید شده و تغییرات تراز سطح آب به منظور مدیریت و کنترل آن امری ضروری میباشد. در پژوهش حاضر به منظور پیشبینی روند تغییرات شوری زهآب خروجی، در عمقها و فاصلههای مختلف استقرار زهکشها از روش شبیهسازی شبکه عصبی مصنوعی، روش حل Solver در نرم افزار اکسل و روش...
متن کاملپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
پیش بینی تقاضای کوتاه مدت آب شهری کمک موثری به مدیران و بهره برداران سیستمهای آب شهری می باشد تا بتوانند نسبت به مدیریت صحیح مصرف، مخازن، پمپها، شیرآلات و تصفیه خانه ها اقدام نمایند. مصرف کوتاه مدت آب تابعی از پارامترهای مختلف و متنوع مانند شرائط اقلیمی و هواشناسی، مناسبتهای فرهنگی، اقتصادی، اجتماعی و مصارف گذشته می باشد. بدلیل همین تنوع، پیش بینی مصرف کوتاه مدت بصورت تحلیلی بسیار مشکل و یا نام...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
تحقیقات منابع آب ایرانجلد ۷، شماره ۱، صفحات ۸۲-۸۶
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023